首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102958篇
  免费   9352篇
  国内免费   7063篇
电工技术   3615篇
技术理论   2篇
综合类   6333篇
化学工业   32746篇
金属工艺   9631篇
机械仪表   2776篇
建筑科学   2379篇
矿业工程   1581篇
能源动力   4419篇
轻工业   7429篇
水利工程   839篇
石油天然气   4319篇
武器工业   601篇
无线电   9844篇
一般工业技术   15414篇
冶金工业   4780篇
原子能技术   1440篇
自动化技术   11225篇
  2024年   146篇
  2023年   1845篇
  2022年   1985篇
  2021年   4436篇
  2020年   3174篇
  2019年   2957篇
  2018年   2666篇
  2017年   3219篇
  2016年   3511篇
  2015年   3478篇
  2014年   4968篇
  2013年   5835篇
  2012年   6672篇
  2011年   8582篇
  2010年   6583篇
  2009年   7592篇
  2008年   6534篇
  2007年   7520篇
  2006年   6796篇
  2005年   5377篇
  2004年   4519篇
  2003年   3822篇
  2002年   3094篇
  2001年   2418篇
  2000年   2164篇
  1999年   1693篇
  1998年   1361篇
  1997年   1047篇
  1996年   925篇
  1995年   848篇
  1994年   787篇
  1993年   607篇
  1992年   459篇
  1991年   369篇
  1990年   316篇
  1989年   242篇
  1988年   156篇
  1987年   106篇
  1986年   105篇
  1985年   76篇
  1984年   60篇
  1983年   35篇
  1982年   53篇
  1981年   49篇
  1980年   41篇
  1979年   29篇
  1977年   15篇
  1976年   14篇
  1975年   14篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
睡眠期间连续且准确的呼吸量监测有助于推断用户的睡眠阶段以及提供一些慢性疾病的线索。现有工作主要针对呼吸频率进行感知和监测,缺乏对呼吸量进行连续监测的手段。针对上述问题提出了一种基于商用无线射频识别(RFID)标签的无线感知用户睡眠期间呼吸量的系统——RF-SLEEP。RF-SLEEP通过阅读器连续收集附着在胸部表面的标签阵列返回的相位值及时间戳数据,计算出呼吸引起的胸部不同点的位移量,基于广义回归神经网络(GRNN)构建胸部不同点的位移量与呼吸量之间的关系模型,从而实现对用户睡眠期间呼吸量的评估。RF-SLEEP通过在用户肩膀处附着双参考标签,消除用户睡眠期间翻转身体对胸部位移计算造成的误差。实验结果表明,RFSLEEP对不同用户睡眠期间的呼吸量连续监测的平均精确度为92.49%。  相似文献   
62.
《工程(英文)》2020,6(10):1192-1198
There is currently an outbreak of respiratory disease caused by a novel coronavirus. The virus has been named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease it causes has been named coronavirus disease 2019 (COVID-19). More than 16% of patients developed acute respiratory distress syndrome, and the fatality ratio was 1%–2%. No specific treatment has been reported. Herein, we examined the effects of favipiravir (FPV) versus lopinavir (LPV)/ritonavir (RTV) for the treatment of COVID-19. Patients with laboratory-confirmed COVID-19 who received oral FPV (Day 1: 1600 mg twice daily; Days 2–14: 600 mg twice daily) plus interferon (IFN)-α by aerosol inhalation (5 million international unit (IU) twice daily) were included in the FPV arm of this study, whereas patients who were treated with LPV/RTV (Days 1–14: 400 mg/100 mg twice daily) plus IFN-α by aerosol inhalation (5 million IU twice daily) were included in the control arm. Changes in chest computed tomography (CT), viral clearance, and drug safety were compared between the two groups. For the 35 patients enrolled in the FPV arm and the 45 patients in the control arm, all baseline characteristics were comparable between the two arms. A shorter viral clearance median time was found for the FPV arm versus the control arm (4 d (interquartile range (IQR): 2.5–9) versus 11 d (IQR: 8–13), P < 0.001). The FPV arm also showed significant improvement in chest CT compared with the control arm, with an improvement rate of 91.43% versus 62.22% (P = 0.004). After adjustment for potential confounders, the FPV arm also showed a significantly higher improvement rate in chest CT. Multivariable Cox regression showed that FPV was independently associated with faster viral clearance. In addition, fewer adverse events were found in the FPV arm than in the control arm. In this open-label before-after controlled study, FPV showed better therapeutic responses on COVID-19 in terms of disease progression and viral clearance. These preliminary clinical results provide useful information of treatments for SARS-CoV-2 infection.  相似文献   
63.
Under normal physiological conditions the brain primarily utilizes glucose for ATP generation. However, in situations where glucose is sparse, e.g., during prolonged fasting, ketone bodies become an important energy source for the brain. The brain’s utilization of ketones seems to depend mainly on the concentration in the blood, thus many dietary approaches such as ketogenic diets, ingestion of ketogenic medium-chain fatty acids or exogenous ketones, facilitate significant changes in the brain’s metabolism. Therefore, these approaches may ameliorate the energy crisis in neurodegenerative diseases, which are characterized by a deterioration of the brain’s glucose metabolism, providing a therapeutic advantage in these diseases. Most clinical studies examining the neuroprotective role of ketone bodies have been conducted in patients with Alzheimer’s disease, where brain imaging studies support the notion of enhancing brain energy metabolism with ketones. Likewise, a few studies show modest functional improvements in patients with Parkinson’s disease and cognitive benefits in patients with—or at risk of—Alzheimer’s disease after ketogenic interventions. Here, we summarize current knowledge on how ketogenic interventions support brain metabolism and discuss the therapeutic role of ketones in neurodegenerative disease, emphasizing clinical data.  相似文献   
64.
研究制备了海绵负载纳米Al2O3微球的复合吸附剂(NAS),并用于对Se(Ⅳ)和Se(Ⅵ)的吸附。结果表明,合成的纳米Al2O3微球(NAO)的平均尺寸为200~400 nm,在海绵上负载NAO会使其分散性更好。当NAO负载量分别为80 mg/g和60 mg/g时,NAS对Se(Ⅳ)和Se(Ⅵ)的吸附性能为佳,分别需要60、120 min达到平衡,适应pH为2~5;两者均符合准2级动力学模型;NAS对Se(Ⅳ)、Se(Ⅵ)的最大吸附容量分别为137.2、143.9 mg/g,能很好地与Freundlich模型拟合,说明NAS表面不均匀,且属于多层吸附。经过2次的循环,对Se(Ⅳ)和Se(Ⅵ)的去除率有所降低,但均仍保持在一定的水平,说明NAS可再生循环利用。NAS作为一种新型吸附剂去除水中Se具有较好的应用前景。  相似文献   
65.
A series of novel aliphatic poly(β‐thioether ester)s with various methylene group contents were prepared by direct lipase‐catalyzed polycondensation of the monomer with an acid‐labile β‐thiopropionate group. The polycondensation reaction using immobilized lipase B from Candida antarctica was carried out in diphenyl ether at 90 °C. Poly(β‐thioether ester)s with high molecular weights of 20 500–57 000 Da and narrow polydispersities in the range 1.40–1.48 were obtained. Thermogravimetric analysis, differential scanning calorimetry and wide‐angle X‐ray diffraction were used to investigate the thermal properties and crystal structures of these polyesters. All the poly(β‐thioether ester)s were semicrystalline polymers and thermally stable up to at least 200 °C. In vitro degradation studies showed that they can rapidly degrade under acidic conditions by the hydrolysis of the β‐thiopropionate groups, suggesting their potential as acid‐degradable polymeric materials. © 2019 Society of Chemical Industry  相似文献   
66.
In order to improve the dispersity and stability of the nano‐SiO2 aqueous system with high solid content, a kind of polyacrylic acid dispersant with methoxysilicon end groups (KH590‐PAA) was synthesized by photopolymerization of acrylic acid (AA) initiated with (3‐mercaptopropyl)trimethoxysilane (KH590). After adding KH590‐PAA into the nano‐SiO2 aqueous dispersion system (20 wt% solid content), the viscosity and the curing time of the system were measured with a rotational viscometer and the inverted bottle method. Moreover, the dispersion mechanism of KH590‐PAA for the nano‐SiO2 aqueous system was researched by measuring the adsorption capacity, the particle size and the zeta potential of the nanoparticles with a conductivity meter, dynamic light scattering, SEM and TEM, respectively. The results showed that the methoxysilicon groups in KH590‐PAA could react with hydroxyl groups on the surface of nano‐SiO2 in the process of stirring, which enhanced the adsorption capacity of the dispersant and then increased the surface charge of the particles. Therefore, electrostatic repulsion and steric hindrance effects between the SiO2 nanoparticles could be further enhanced by adding the KH590‐PAA dispersant, and then the nano‐SiO2 aqueous system exhibited better dispersity and stability. Besides, the dispersion properties of SiO2 nanoparticles in water were closely related to the addition amount and the molecular weight of the KH590‐PAA dispersant. © 2018 Society of Chemical Industry  相似文献   
67.
Pro-inflammatory cytokines like interleukin-1β (IL-1β) are upregulated during early responses to tissue damage and are expected to transiently compromise the mechanical microenvironment. Fibroblasts are key regulators of tissue mechanics in the lungs and other organs. However, the effects of IL-1β on fibroblast mechanics and functions remain unclear. Here we treated human pulmonary fibroblasts from control donors with IL-1β and used Atomic Force Microscopy to unveil that IL-1β significantly reduces the stiffness of fibroblasts concomitantly with a downregulation of filamentous actin (F-actin) and alpha-smooth muscle (α-SMA). Likewise, COL1A1 mRNA was reduced, whereas that of collagenases MMP1 and MMP2 were upregulated, favoring a reduction of type-I collagen. These mechanobiology changes were functionally associated with reduced proliferation and enhanced migration upon IL-1β stimulation, which could facilitate lung repair by drawing fibroblasts to sites of tissue damage. Our observations reveal that IL-1β may reduce local tissue rigidity by acting both intracellularly and extracellularly through the downregulation of fibroblast contractility and type I collagen deposition, respectively. These IL-1β-dependent mechanical effects may enhance lung repair further by locally increasing pulmonary tissue compliance to preserve normal lung distension and function. Moreover, our results support that IL-1β provides innate anti-fibrotic protection that may be relevant during the early stages of lung repair.  相似文献   
68.
69.
In this study, 30 subjects were exposed to different combinations of air temperature (Ta: 24, 27, and 30°C) and CO2 level (8000, 10 000, and 12 000 ppm) in a high-humidity (RH: 85%) underground climate chamber. Subjective assessments, physiological responses, and cognitive performance were investigated. The results showed that as compared with exposure to Ta = 24°C, exposure to 30°C at all CO2 levels caused subjects to feel uncomfortably warm and experience stronger odor intensity, while increased mental effort and greater intensity of acute health symptoms were reported. However, no significant effects of Ta on task performance or physiological responses were found. This indicated that subjects had to exert more effort to maintain their performance in an uncomfortably warm environment. Increasing CO2 from 8000 to 12 000 ppm at all Ta caused subjects to report higher rates of headache, fatigue, agitation, and feeling depressed, although the results were statistically significant only at 24 and 27°C. The text typing performance and systolic blood pressure (SBP) decreased significantly at this exposure, whereas diastolic blood pressure (DBP) and thermal discomfort increased significantly. These effects suggest higher arousal/stress. No significant interaction effect of Ta and CO2 concentration on human responses was identified.  相似文献   
70.
The effect of Li2O on the crystallization properties of CaO-Al2O3-SiO2-Li2O-Ce2O3 slags was investigated. With increasing the Li2O content, LiAlO2 and CaCeAlO4 were the main crystalline phases. LiAlO2 formed for the charge compensating of Li+ ions to [AlO45?]-tetrahedrons, and CaCeAlO4 formed as a result of the charge balance of Ce3+ ions, Ca2+ ions, and [AlO69?]-octahedrons. Increasing the content of Li2O to 10%, the crystallization temperature was the highest, and the incubation time was the shortest. The crystallization ability was strong due to the three factors of strengthening the interaction between ions and ion groups, decreasing the polymerization degree, and increasing the melting temperature. Further increasing the content of Li2O, the crystallization performance was obviously suppressed, because the melting temperature and the force between the cations and the anion groups decreased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号